
Zuhair Abbas

MEMBER OF

ECOSYSTEM

HTR

HANDWRITTEN TEXT
RECOGNITION SYSTEM

CONTENTS

Introduction 1

Literature review 2

Datasets 3

Data preparation 5

CNN-RNN-CTC Network 10

CTC loss 12

Training 13

Evaluation 14

Testing 15

Conclusion 16

Future work 16

Afterword 17

References 18

1

Handwriting recognition is a trending
application of Artificial Intelligence with
extensive research going on around it. It can
be classified as a subfield of Optical
Character recognition. Almost every major
industry enjoys the perks of OCR. Still, there
is tremendous space for improvement in this
sphere. Expectations leading to more
advanced needs will always surpass the
quality of current results. This gap between
the quality and expectations can only be
filled by the constant research in the area of
Computer Vision and Deep Learning.

Within OCR lies a field of Handwriting
detection and recognition. Although
computer-generated text can be easily
recognized using various OCR tools available
with remarkable accuracy, handwritten
documents are usually hard to recognize
because there are a number of factors
involved apart from the text itself. The data
might contain a lot of variation in terms of
handwriting/text size/page texture, picture
quality, and ink. In this project, we explore a
State-of-the-art technology to solve a
handwritten detection problem for a
historical transcript written in Spanish.�

In Complex cases like Handwriting
recognition of Historical documents, most

OCR tools/libraries miserably fail to detect
the handwritten text. O�ine Handwritten
text recognition for Historical documents is
considered the most challenging problem in
this sphere due to:

• Cursive nature of handwriting
• Quality of pages and pictures
• Variety of character size and shape
• Large vocabulary.

This is where ICR (Intelligent Character
Recognition) comes to the rescue. ICR
comprises advanced Machine learning and
Deep learning techniques. These techniques
usually require a huge amount of continuous
and stable data preferably coming from the
same source. This data is then used to train
complex models for text recognition. Further
using these trained models for a di�erent
handwritten dataset with very high accuracy
is still a hot topic of research that goes under
the umbrella of Domain adaptation. In our
project, we also utilize a subfield of domain
adaption called Transfer learning. We will
shed some light on it in the Training section.

INTRODUCTION

2

A considerable amount of research has been carried out on O�ine handwriting recognition in
the last decade. We will briefly go through some of the well-known approaches.

Jose Carlos Aradillas and Juan Jose Murillo-Fuentes crafted a technique to boost O�ine
Handwritten Text Recognition in Historical Documents with Few Labeled Lines by combining
the benefits of transfer learning and advanced data augmentation techniques. They proposed
an algorithm to mitigate the e�ects of incorrect labeling in the training set. The method
significantly reduces the required number of annotated lines. However, their network takes
many days to train on large datasets.

Curtis Wigington and Chris Tensmeyer proposed Start, Follow, Read: An End-to-End Full-Page
Handwriting Recognition pipeline using 3 separate models. It Jointly learns text detection,
segmentation, and recognition using mostly images without detection or segmentation
annotations. SFR exceeds the performance of the winner of the ICDAR2017 handwriting
recognition competition. Nevertheless, it has some drawbacks like it requires a small number
of images that have SOL, segmentation, and line-level transcription annotations. The overall
pipeline is fairly complex to understand, and the best recognition results are still achieved by
the systems working at the line level.

Adeline Granet and Emmanuel Morin utilized transfer learning techniques. Their goal was to
train a recognition system without involving the annotation step. Also, make use of Transfer
learning from heterogeneous datasets with ground truth and share common properties with a
new dataset that has no ground truth. They used RCNN with CTC loss for training. The paper
didn’t explain how they used the text-line segmentation algorithm. Moreover, it requires a
manual validation of the collected transcriptions of each block, each line, as well as the
segmented lines themselves.

Edgard Chammas and Chafik Mokbel demonstrate how to train an HTR system with few
labeled data. Specifically, we train a deep convolutional recurrent neural network (CRNN)
system on only 10% of manually labeled text-line data from a dataset and propose an
incremental training procedure that covers the rest of the data. Performance is further
increased by augmenting the training set with specially crafted multi-scale data. They used a
Contour based line segmentation approach that is not feasible for complex data. Therefore,
more advanced segmentation algorithms are needed to improve the selection/training
process, like the ones based on the Seam Carving technique. Also, the network architecture
was very complex.

All these trending HTR approaches have something in common. They all use a combination of
RNNs and CNNs and most importantly they use CTC loss for training. We will explore its
benefits in the following section. In our project, we also utilized a CNN-RNN model along with
CTC loss and also integrated the benefits of data augmentation techniques and transfer
learning.

LITERATURE REVIEW

3

Our dataset consists of 40 pages taken from 2 di�erent transcripts of Jose Enrique Camilo
Rodo, a famous Uruguayan essayist. This dataset was provided by The National Library of
Uruguay. Although the data was coming from the transcript of the same author, it was still
one of the most complex data to be recognized due to a lot of variation in handwriting/text
size/page texture and picture quality, and ink.

DATASETS

4

And of course, there were some readable images, from the other book, like the ones below:

DATA PREPARATION

5

Most recognition models work on a word level or the line level. Thus, it is essential to segment
the page into lines/words. It’s been observed that the annotation accuracy remarkably a�ects
the performance of the recognition model. In order to evaluate the performance of HTR
(handwriting recognition system), the safest bet is to use an annotation tool that can
annotate and label the text lines using polygons. We explored many annotation tools and
found the VGG annotator to be the most suitable for our project.

VGG Annotator

VGG Image Annotator is a simple and standalone manual annotation software for images,
audio, and video.�

Pros
• Free and easy to use.
• Runs in the browser and no

installation/dependencies are required.
• Only 400kb, works o�ine.
• Allow polygonal segmentation. Allow

basic editing tools. Support output
formats like JSON, CSV, etc.

• Compatible with all modern browsers.

Cons
• A very basic tool but works well in our

case.

6

Requirements for Annotation
◦ Exclude the margins on the pages.
◦ The line images should be concise and

clear containing only one line.
◦ Make sure that the words are not cut.
◦ The line images should be straight (not

rotated).
◦ If a word is not clear, better replace it

with a blank character ‘-’. (The model
learns to identify the individual
characters, so it might be a problem).

◦ It is ok to have just one word in the line,
but the horizontal length of the image
should be somewhat uniform.

◦ Avoid lines that are too damaged
(contains crossed words, unidentified
words, lines, etc.)

Once all the images are annotated like the example shown above, we can download the
annotations in a CSV / JSON file containing the metadata, polygonal data, as well as the labels.

7

Line Segmentation

The next step is to segment the lines using polygonal
data. Our algorithm crops each line using coordinates
of the polygon and place it over a white background
for the sake of similarity.

624 line images were generated.

UNet Segmentation

While manual line segmentation and annotation are more precise and reliable, it’s often not
suitable for production. Thus, we also came up with an automatic line segmentation solution
using UNet model. Since we are dealing with a di�cult dataset set consisting of historical
handwritten documents, naive approaches like contour detection, simple Deep neural
networks, and fully connected networks fail against the complexities of such data. UNet is a
fully convolutional network that was initially designed for biomedical applications, but it can
be used for a vast variety of segmentation tasks and text line segmentation is one example.

We can divide the line segmentation pipeline into 3 steps:

• Pre-processing

◦ Performing binarization, we perform OTSU thresholding since it automatically
determines an optimal global threshold value from the image histogram.

◦ Since most of the images in our dataset have overlapping lines, we apply Erosion using a
horizontally dominated kernel, to create a clear boundary between the lines.

◦ Finally, we apply median blur to further smooth out the edges and remove any
unwanted noise.

Although UNet performed considerably well, it also failed in some extreme cases where the
page was too noisy, or lines were heavily overlapped.

8

• Training / Prediction

We used a typical UNet architecture, where the image is initially downsampled and then
upsampled. This process preserves the most important features of the image, which helps in
segmentation. The output is a complete image that not only classifies each pixel but also
retains the information on precise localization of each pixel. Our model comprises of 2D
convolutional, layers along with alternating Max pooling layers and some upsampling layers.
The upsampling is done using transposed convolution. Transpose convolution boils down to
learning parameters through back propagation in order to convert a low-resolution image to
a high-resolution image. During the upsampling stage, which is also referred as decoding, we
use skip connections by concatenating the output of the transposed convolution layers with
the feature maps from the Encoder at the same level. In this way, the model learns to
assemble a more precise output.

The model is compiled with Adam optimizer, and we use binary cross entropy loss since we
are working with a binary image.

We train for 50 epochs and achieved a validation loss of 70 %. Let’s look at the results below
containing the original masked image and the predicted mask respectively.

9

• Post processing

To clean up the prediction image we apply a low degree erosion and median blur to clear the
noisy edges. After that, we apply the CV2 contour detection technique. The active
contours/snake method can also be used as an alternative here.

The output from the contour detection is shown in the following figure:

We consider the outer edge of contours while cropping it out of the lines. These lines are then
passed as the input to our CNN-RNN-CTC network for text recognition.

CNN-RNN-CTC NETWORK

10

The HTR system consists of 3 components:

1. CNN. The Convolutional neural network works as a feature extractor, the input image is
first fed into CNN, and the output is regarded as a series of features. 512 features are
extracted from the convolution part.

2. RNN. A BI-LSTM model takes the features as input and outputs a matrix containing the
character probabilities at each timestamp. There are 4 LSTM layers with 512 hidden units.

3. CTC. CTC computes the loss for RNN and also decodes the output sequence.

11

Basic Intuition

First the Convolutional Recurrent Neural Network is used to extract the important features
from the handwritten line text Image. Its output (512 features) is passed to the BLSTM which
is for sequence dependency and time-sequence operations. The output of BLSTM is 96 x
length(character_dictionary) i.e., 96 timesteps and number of a certain number of characters
including blank. Then CTC loss is used to train the RNN which eliminates the Alignment
problem in Handwritten since handwritten has a di�erent alignment for every writer. We will
discuss the CTC loss in more detail in the upcoming section.

CTC LOSS

12

CTC finds out the possible paths from the given labels. Loss is given by for (X, Y) pair is .

It is calculated by summing up all scores of all
possible alignments of the GT text, this way it
does not matter where the text appears in the
image.

The score for one alignment (or path, as it is
often called in the literature) is calculated by
multiplying the corresponding character scores
together. In the example shown above, the
score for the path “aa” is 0.4·0.4=0.16 while it is
0.4·0.6=0.24 for “a-” and 0.6·0.4=0.24 for “-a”.

Best Path Decoding

Take the most likely character per timestamp. Remove all the duplicates and then blanks ‘-’
from the path.

Best path decoding is a very simple yet e�ective decoding scheme, there are still some
scenarios that can’t be handled by it, for those cases we have more advanced decoding
techniques such as beam-search decoding, prefix-search decoding, or token passing, which
also use information about language structure to improve the results.

Motivation

• We don’t need to annotate the data at the Character level, we only pass the GT text,
ignoring both width and position of the character.

• No post-processing is needed to get the final text. CTC handles the decoding for us.

CTC is very useful for variable-size input as well as outputs. Optimize two functions at the
same time: The length of the output sequence and the classes of the output sequence.

Output matrix of NN. The character-probability is color-coded
and is also printed next to each matrix entry. Thin lines are paths
representing the text “a”, while the thick dashed line is the only
path representing the text “”.

The CTC
Conditional
probability

marginalizes
over the set of
valid alignments

computing the probability
for a single alignment
step-by-step

p(Y | X) = Σ pt(at | X)
AЄAX,Y

Π
T

t=1

a

t0 t1 t
p=1

p=0

0.40.4

0.00.0

0.60.6

b

s

TRAINING

13

1. DATA PREPROCESSING

This is a crucial step in any Deep learning problem. Our data is pre-processed and augmented
before passing to the model. Augmentation techniques are used to increase the size of
training data. These pre-processing techniques include

• Adaptive thresholding
• Deslanting
• Random transformations like

◦ Stretching, Rescaling
◦ Rotation
◦ Padding
◦ Rescaling.
◦ These random transformations result in batch-level data augmentation.

The model was trained for 70 epochs using the Batch size of 16, the Base learning rate of 1e-4,
the Max learning rate of 1e-2, and the decay value of 0.1. All these hyper-parameters were
tuned using grid search, an exhaustive search over specified parameter values for an
estimator.

2. TRANSFER LEARNING

It is a subdomain of Domain adaptation
that focuses on storing knowledge
gained while solving one problem and
applying it to a di�erent but related
problem.

Motivation
• Lack of training data

• To save time and space
complexity

We used a CNN-RNN-CTC model,
pre-trained on IAM Dataset (A benchmark
for HTR tasks) The CNN layers are frozen
and BILSTM is re-trained on test datasets.

EVALUATION

14

We use Levenshtein distances as the main matrix for model evaluation metrics. The sum of the
Levenshtein edit distances divides by the sum of the target lengths, for both the training and
validation set. At each epoch, these distances are printed along with the losses for both the
training and validation set.

Losses for the last epoch:

We successfully trained and tested our model and achieved a validation error rate as low as
0.2 % for Rodo’s dataset after 70 epochs using both training approaches. This can be further
reduced by using more data for training and increased learning time.

Here we can see a descending
trend in both the training and
validation losses which tells us that
the model is learning and denying
the presence of over / underfitting.
Although there are fluctuations in
the first half of the epochs which
make sense since we have
relatively few training images and
a considerable amount of variation
within the images.

EPOCHS TRAIN LOSS VAL LOSS TRAIN LEVEN VAL LEVEN

70 10.198 859.392 0.0073 0.27

TESTING

15

We tested our model on a variety of images from both transcripts. Here are a few examples of
predictions:

CONCLUSION

16

In light of results obtained from training and testing we can conclude that:

• The model is su�cient and strong enough to learn from such complex data given the input
images are well annotated and segmented.

• The text recognition performance depends both on the quality as well as quantity of the
data we have. More data results in better learning and performance of the model.

• It is evident that it is possible to recognize text from an author (Rodo in our case) even if
the data is discontinued (coming from di�erent sources of the same author), given that we
have enough carefully annotated lines to train the model.

FUTURE WORK

We can have a single model, good enough to recognize Rodo’s text even if it's coming from
di�erent transcripts given that the model is trained with a lot more well-segmented line
images from various textbooks of Rodo. We can try to use a language model or a spell checker
to correct minor mistakes in the predictions.

AFTERWORD

17

Unlock the power of handwriting recognition

By converting handwritten text into a digital format, our solution offers a range of
powerful capabilities for organizations and businesses. It increases the accuracy and
efficiency of information processing, simplifies the search, location and retrieval of
specific information or documents from large collections, and enables accurate indexing
and metadata tagging.

Institutions such as libraries, archives and museums can benefit from handwriting
recognition. By leveraging this technology, they can digitize and transcribe their valuable
archives and manuscripts, making them easily accessible to researchers, scholars,
journalists and students worldwide. Once documents are in digital format, users can
efficiently extract information, perform textual analysis, and conduct linguistic or
historical research. The technology also makes it easy to compare and cross-reference
multiple documents. In addition, it enables remote collaboration and annotation sharing,
contributing to the collective knowledge of various fields of study, fostering a vibrant
academic community and encouraging interdisciplinary research.

Other organizations, including banks and public and private institutions with an archive
of handwritten documents, can benefit from our technology by extracting structured
data such as names, dates, locations, and specific content elements. This data
extraction enhances the metadata, making it easier to categorize, classify and organize
the digitized materials within the institution's databases.

Our handwriting recognition technology enables companies and organizations to unlock
the full potential of their handwritten collections by improving accessibility and
searchability. It also adds value to research, education, cultural preservation and
information management. We invite you to work with our dedicated team of engineers to
find a solution tailored to your specific handwriting recognition needs. Our technology
supports multiple languages and is designed to accurately recognize and adapt to
variations in handwriting, including differences in handwriting size, text size, page
texture, image quality and ink.

REFERENCES

18

• https://openaccess.thecvf.com/content_ECCV_2018/papers/Curtis_Wigington_Start_Foll
ow_Read_ECCV_2018_paper.pdf

• https://towardsdatascience.com/intuitively-understanding-connectionist-temporal-classifi
cation-3797e43a86c

• https://hal.archives-ouvertes.fr/hal-01681126/document

• https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8395169

• https://medium.com/swlh/learn-and-use-handwritten-line-text-recognition-using-deep-le
arning-with-tensorflow-b661434b5e3b

• https://www.robots.ox.ac.uk/~vgg/software/via/via.html

• https://idus.us.es/bitstream/handle/11441/125558/Boosting%20O�ine%20Handwritten%20
Text%20Recognition.pdf?sequence=1&isAllowed=y

• https://medium.com/geekculture/detecting-text-lines-in-a-document-image-using-deep-l
earning-5a21b480bc4c

• https://towardsdatascience.com/understanding-semantic-segmentation-with-unet-6be4f
42d4b47

